文章摘要(AI生成)
1. 两数之和给定一个整数数组 nums 和一个整数目标值 target,请你在该数组中找出 和为目标值 target 的那 两个 整数,并返回它们的数组下标。你可以假设每种输入只会对应一个答案。但是,数组中同一个元素在答案里不能重复出现。你可以按任意顺序返回答案。示例 1:输入:nums =
数据结构
两数之和
给定一个整数数组 nums 和一个整数目标值 target,请你在该数组中找出 和为目标值 target 的那 两个 整数,并返回它们的数组下标。
你可以假设每种输入只会对应一个答案。但是,数组中同一个元素在答案里不能重复出现。
你可以按任意顺序返回答案。
示例 1:
输入:nums = [2,7,11,15], target = 9
输出:[0,1]
解释:因为 nums[0] + nums[1] == 9 ,返回 [0, 1] 。
示例 2:
输入:nums = [3,2,4], target = 6
输出:[1,2]
示例 3:
输入:nums = [3,3], target = 6
输出:[0,1]
SOLUTION:哈希法
使用哈希表,可以将寻找 target - x 的时间复杂度降低到从 O(N)O(N) 降低到 O(1)O(1)。
这样我们创建一个哈希表,对于每一个 x,我们首先查询哈希表中是否存在 target - x,然后将 x 插入到哈希表中,即可保证不会让 x 和自己匹配。
class Solution {
public int[] twoSum(int[] nums, int target) {
Map<Integer, Integer> hashtable = new HashMap<Integer, Integer>();
for (int i = 0; i < nums.length; ++i) {
if (hashtable.containsKey(target - nums[i])) {
return new int[]{hashtable.get(target - nums[i]), i};
}
hashtable.put(nums[i], i);
}
return new int[0];
}
}
罗马数字转整数
罗马数字包含以下七种字符: I
, V
, X
, L
,C
,D
和 M
。
字符 数值
I 1
V 5
X 10
L 50
C 100
D 500
M 1000
例如, 罗马数字 2
写做 II
,即为两个并列的 1 。12
写做 XII
,即为 X
+ II
。 27
写做 XXVII
, 即为 XX
+ V
+ II
。
通常情况下,罗马数字中小的数字在大的数字的右边。但也存在特例,例如 4 不写做 IIII
,而是 IV
。数字 1 在数字 5 的左边,所表示的数等于大数 5 减小数 1 得到的数值 4 。同样地,数字 9 表示为 IX
。这个特殊的规则只适用于以下六种情况:
I
可以放在V
(5) 和X
(10) 的左边,来表示 4 和 9。X
可以放在L
(50) 和C
(100) 的左边,来表示 40 和 90。C
可以放在D
(500) 和M
(1000) 的左边,来表示 400 和 900。
给定一个罗马数字,将其转换成整数。
示例 1:
输入: s = "III"
输出: 3
示例 2:
输入: s = "IV"
输出: 4
示例 3:
输入: s = "IX"
输出: 9
示例 4:
输入: s = "LVIII"
输出: 58
解释: L = 50, V= 5, III = 3.
示例 5:
输入: s = "MCMXCIV"
输出: 1994
解释: M = 1000, CM = 900, XC = 90, IV = 4.
SOLUTION:哈希表
class Solution {
Map<Character, Integer> symbolValues = new HashMap<Character, Integer>() {{
put('I', 1);
put('V', 5);
put('X', 10);
put('L', 50);
put('C', 100);
put('D', 500);
put('M', 1000);
}};
public int romanToInt(String s) {
int ans = 0;
int n = s.length();
for (int i = 0; i < n; ++i) {
int value = symbolValues.get(s.charAt(i));
if (i < n - 1 && value < symbolValues.get(s.charAt(i + 1))) {
ans -= value;
} else {
ans += value;
}
}
return ans;
}
}
存在重复元素
给定一个整数数组,判断是否存在重复元素。
如果存在一值在数组中出现至少两次,函数返回 true
。如果数组中每个元素都不相同,则返回 false
。
示例 1:
输入: [1,2,3,1]
输出: true
示例 2:
输入: [1,2,3,4]
输出: false
示例 3:
输入: [1,1,1,3,3,4,3,2,4,2]
输出: true
SOLUTION:哈希表
对于数组中每个元素,我们将它插入到哈希表中。如果插入一个元素时发现该元素已经存在于哈希表中,则说明存在重复的元素。
class Solution {
public boolean containsDuplicate(int[] nums) {
Set<Integer> set = new HashSet<Integer>();
for (int x : nums) {
if (!set.add(x)) {
return true;
}
}
return false;
}
}
两数相加
给你两个 非空 的链表,表示两个非负的整数。它们每位数字都是按照 逆序 的方式存储的,并且每个节点只能存储 一位 数字。
请你将两个数相加,并以相同形式返回一个表示和的链表。
你可以假设除了数字 0 之外,这两个数都不会以 0 开头。
示例1:
输入:l1 = [2,4,3], l2 = [5,6,4]
输出:[7,0,8]
解释:342 + 465 = 807.
示例 2:
输入:l1 = [0], l2 = [0]
输出:[0]
示例 3:
输入:l1 = [9,9,9,9,9,9,9], l2 = [9,9,9,9]
输出:[8,9,9,9,0,0,0,1]
SOLUTION:链表
将两个链表看成是相同长度的进行遍历,如果一个链表较短则在前面补 00,比如 987 + 23 = 987 + 023 = 1010
每一位计算的同时需要考虑上一位的进位问题,而当前位计算结束后同样需要更新进位值
如果两个链表全部遍历完毕后,进位值为 11,则在新链表最前方添加节点 11
小技巧:对于链表问题,返回结果为头结点时,通常需要先初始化一个预先指针 pre,该指针的下一个节点指向真正的头结点head。使用预先指针的目的在于链表初始化时无可用节点值,而且链表构造过程需要指针移动,进而会导致头指针丢失,无法返回结果
/**
* Definition for singly-linked list.
* public class ListNode {
* int val;
* ListNode next;
* ListNode(int x) { val = x; }
* }
*/
class Solution {
public ListNode addTwoNumbers(ListNode l1, ListNode l2) {
ListNode pre = new ListNode(0);
ListNode cur = pre;
int carry = 0;
while(l1 != null || l2 != null) {
int x = l1 == null ? 0 : l1.val;
int y = l2 == null ? 0 : l2.val;
int sum = x + y + carry;
carry = sum / 10;
sum = sum % 10;
cur.next = new ListNode(sum);
cur = cur.next;
if(l1 != null)
l1 = l1.next;
if(l2 != null)
l2 = l2.next;
}
if(carry == 1) {
cur.next = new ListNode(carry);
}
return pre.next;
}
}
有效的括号
给定一个只包括 '('
,')'
,'{'
,'}'
,'['
,']'
的字符串 s
,判断字符串是否有效。
有效字符串需满足:
- 左括号必须用相同类型的右括号闭合。
- 左括号必须以正确的顺序闭合。
示例 1:
输入:s = "()"
输出:true
示例 2:
输入:s = "()[]{}"
输出:true
示例 3:
输入:s = "(]"
输出:false
示例 4:
输入:s = "([)]"
输出:false
示例 5:
输入:s = "{[]}"
输出:true
SOLUTION:栈
判断括号的有效性可以使用「栈」这一数据结构来解决。
我们遍历给定的字符串 s。当我们遇到一个左括号时,我们会期望在后续的遍历中,有一个相同类型的右括号将其闭合。由于后遇到的左括号要先闭合,因此我们可以将这个左括号放入栈顶。
当我们遇到一个右括号时,我们需要将一个相同类型的左括号闭合。此时,我们可以取出栈顶的左括号并判断它们是否是相同类型的括号。如果不是相同的类型,或者栈中并没有左括号,那么字符串 s 无效,返回 False。为了快速判断括号的类型,我们可以使用哈希表存储每一种括号。哈希表的键为右括号,值为相同类型的左括号。
在遍历结束后,如果栈中没有左括号,说明我们将字符串 s 中的所有左括号闭合,返回 True,否则返回 False。
注意到有效字符串的长度一定为偶数,因此如果字符串的长度为奇数,我们可以直接返回 False,省去后续的遍历判断过程。
class Solution {
public boolean isValid(String s) {
int n = s.length();
if (n % 2 == 1) {
return false;
}
Map<Character, Character> pairs = new HashMap<Character, Character>() {{
put(')', '(');
put(']', '[');
put('}', '{');
}};
Deque<Character> stack = new LinkedList<Character>();
for (int i = 0; i < n; i++) {
char ch = s.charAt(i);
if (pairs.containsKey(ch)) {
if (stack.isEmpty() || stack.peek() != pairs.get(ch)) {
return false;
}
stack.pop();
} else {
stack.push(ch);
}
}
return stack.isEmpty();
}
}
二叉树的层序遍历
给你一个二叉树,请你返回其按 层序遍历 得到的节点值。 (即逐层地,从左到右访问所有节点)。
示例:
二叉树:[3,9,20,null,null,15,7]
,
3
/ \
9 20
/ \
15 7
返回其层序遍历结果:
[
[3],
[9,20],
[15,7]
]
SOLUTION:广度优先搜索
DFS(深度优先搜索)和 BFS(广度优先搜索)就像孪生兄弟,提到一个总是想起另一个。然而在实际使用中,我们用 DFS 的时候远远多于 BFS。那么,是不是 BFS 就没有什么用呢?
如果我们使用 DFS/BFS 只是为了遍历一棵树、一张图上的所有结点的话,那么 DFS 和 BFS 的能力没什么差别,我们当然更倾向于更方便写、空间复杂度更低的 DFS 遍历。不过,某些使用场景是 DFS 做不到的,只能使用 BFS 遍历。这就是本文要介绍的两个场景:「层序遍历」、「最短路径」。
DFS 与 BFS
让我们先看看在二叉树上进行 DFS 遍历和 BFS 遍历的代码比较。
DFS 遍历使用递归:
void dfs(TreeNode root) {
if (root == null) {
return;
}
dfs(root.left);
dfs(root.right);
}
BFS 遍历使用队列数据结构:
void bfs(TreeNode root) {
Queue<TreeNode> queue = new ArrayDeque<>();
queue.add(root);
while (!queue.isEmpty()) {
TreeNode node = queue.poll(); // Java 的 pop 写作 poll()
if (node.left != null) {
queue.add(node.left);
}
if (node.right != null) {
queue.add(node.right);
}
}
}
最终结果:
public List<List<Integer>> levelOrder(TreeNode root) {
List<List<Integer>> res = new ArrayList<>();
Queue<TreeNode> queue = new ArrayDeque<>();
if (root != null) {
queue.add(root);
}
while (!queue.isEmpty()) {
int n = queue.size();
List<Integer> level = new ArrayList<>();
for (int i = 0; i < n; i++) {
TreeNode node = queue.poll();
level.add(node.val);
if (node.left != null) {
queue.add(node.left);
}
if (node.right != null) {
queue.add(node.right);
}
}
res.add(level);
}
return res;
}
岛屿数量
给你一个由 '1'
(陆地)和 '0'
(水)组成的的二维网格,请你计算网格中岛屿的数量。
岛屿总是被水包围,并且每座岛屿只能由水平方向和/或竖直方向上相邻的陆地连接形成。
此外,你可以假设该网格的四条边均被水包围。
示例 1:
输入:grid = [
["1","1","1","1","0"],
["1","1","0","1","0"],
["1","1","0","0","0"],
["0","0","0","0","0"]
]
输出:1
示例 2:
输入:grid = [
["1","1","0","0","0"],
["1","1","0","0","0"],
["0","0","1","0","0"],
["0","0","0","1","1"]
]
输出:3
SOLUTION:深度优先搜索
class Solution {
public int numIslands(char[][] grid) {
if (grid == null || grid.length == 0) {
return 0;
}
int nr = grid.length;
int nc = grid[0].length;
int num_islands = 0;
for (int r = 0; r < nr; ++r) {
for (int c = 0; c < nc; ++c) {
if (grid[r][c] == '1') {
++num_islands;
dfs(grid, r, c);
}
}
}
return num_islands;
}
void dfs(char[][] grid, int r, int c) {
int nr = grid.length;
int nc = grid[0].length;
if (r < 0 || c < 0 || r >= nr || c >= nc || grid[r][c] == '0') {
return;
}
grid[r][c] = '0';
dfs(grid, r - 1, c);
dfs(grid, r + 1, c);
dfs(grid, r, c - 1);
dfs(grid, r, c + 1);
}
}
用两个栈实现队列
用两个栈实现一个队列。队列的声明如下,请实现它的两个函数 appendTail 和 deleteHead ,分别完成在队列尾部插入整数和在队列头部删除整数的功能。(若队列中没有元素,deleteHead 操作返回 -1 )
class CQueue {
Deque<Integer> stack1;
Deque<Integer> stack2;
public CQueue() {
stack1 = new LinkedList<Integer>();
stack2 = new LinkedList<Integer>();
}
public void appendTail(int value) {
stack1.push(value);
}
public int deleteHead() {
// 如果第二个栈为空
if (stack2.isEmpty()) {
while (!stack1.isEmpty()) {
stack2.push(stack1.pop());
}
}
if (stack2.isEmpty()) {
return -1;
} else {
int deleteItem = stack2.pop();
return deleteItem;
}
}
}
LRU缓存
class LRUCache extends LinkedHashMap<Integer, Integer>{
private int capacity;
public LRUCache(int capacity) {
super(capacity, 0.75F, true);
this.capacity = capacity;
}
public int get(int key) {
return super.getOrDefault(key, -1);
}
// 这个可不写
public void put(int key, int value) {
super.put(key, value);
}
@Override
protected boolean removeEldestEntry(Map.Entry<Integer, Integer> eldest) {
return size() > capacity;
}
}
评论区